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Hyperspectral cubes

Continuous coverage

of an area
Spectral Distortion in Loss Compression of Hyperspectral Data, Aiazzi, et al, 

Journal of Electrical and Computer Engineering, 2012(5):1817-1819, Aug 

2003, DOI: 10.1109/IGARSS.2003.1294260

Bodkin Engineering, http://www.bodkindesign.com/products-

page/hyperspectral-imaging/hyperspectral-imaging/ 



Multi versus 

hyperspectral imagery

• Multi: lower resolution band coverage

• Hyper: continuous resolution with much higher 

spectral resolution

• much higher information content

• ability to identify unique components

• more suitable for machine learning algorithms

• The shape of the two are the same

• We treat them the same 



Hyperspectral imagery drivers

• Improving instrumentation provides increasing 

resolution

• Growing commercial development of imagers

• Increased flying options, including UAVs, allow 

even greater deployment

• Cloud computing, commodity parallelization, big 

data engines



Hyperspectral imagery applications

• Solar variability, effects on climate

• Cloud property retrievals

• Agriculture,  agriscience

• Biodiversity, ecology, environmental monitoring

• Food processing, safety

• Medical imaging, biotechnology

• Drug identification, counterfeit and foreign 

material detection

• Reconnaissance, surveillance



Multi and Hyperspectral 

Imagery Challenges

• Huge data volumes, cost to 

manage

• 100TB for an analysis

• Complex preprocessing

• Coordinate system transformations

download

done?

start

finish

wait

start analysis/transform code

evaluate

modify analysis wait

A typical workflow (assuming 

space is not an issue)



Scientists want to

• Match data from different sources by time, geolocation,

• Select pieces of spectral imagery by time, location, 

wavelength,

• Apply analysis algorithms to the data,

• Create new data products that are the ‘fusion’ of 

multiple data sources,

• Work with both multi and hyperspectral datasets

• cross calibration, find common areas, etc.

• … in a responsive, performant fashion.



Hylatis: a platform for 

hyperspectral image analysis

• Toolset for multispectral and hyperspectral datasets in the 

cloud

• Data model and framework to support reusable code, 

dataset integration, and interoperability

• Most generally, a domain agnostic platform for science 

data representation and analysis, that

• Any domain can write to

• Supports operations such as transforms in a structured, 

organized way, rather than writing one off code for each 

transformation needed



Hylatis: a software research project

• How to structure software to support modeling and 

analysis of spectral data

• Will not produce new data products 

• Will not stand up a repository of hyperspectral imagery

• Building a software layer in front of hyperspectral data

• could be used to support a repository



Core project principles
• Commitment to principles of mathematics to model and operate 

on data

• Use of functional programming style, whose benefits include:

• More thoughtful, rigorous, up front development produces code 

that is more correct, more easily parallelizable

• Compiler can check reasoning

• Capture of generalizations without domain specificity, enabling 

code reuse

• Composition of functions

• Modeling data mathematically, for flexibility in representation and 

thus easier interoperability of disparate datasets



Using math at the 

foundational level

• Data model is simply a mathematical function of 

independent and dependent variables

• no domain semantics

• temperature = f(time, latitude, longitude)

• same as:  x = f(a, b, c)

• interpreter uses pattern matching



cloud detection alg

mask alg
D3, 

corresponding 

image for cloud 

mask application

existing dataset

D1, land view with 

clouds

existing dataset

D2, extracted 

cloud 

boundaries

created dataset, temporary

D4, new dataset 

with cloud mask 

from D1  applied to 

D3

created dataset

Hypothetical composition problem

D4 = mask((cloud_detection(D1)), D3)

Using clouds detected 

from D1, apply cloud 

boundaries to image D3, 

to create new dataset D4



Hylatis architecture

Based on LaTiS middleware
https://github.com/latis-data/latis

LaTiS supports: 

• code reuse

• server side 

computations

• e.g., on 

demand 

reformatting 

https://github.com/latis-data/latis


Initial Hylatis task

Subset a hyperspectral cube by geolocation, 

select 3 bands, 

display them as RGB image.



Data flow diagram

for RGB image gen problem

data 

source

S3 

buck

et

native coordinates

Cartesian coordinates (regular, integer indices)

lat/lon coordinates, native orientation

lat/lon coordinates, North orientation

load into cloud storage

load into compute nodes

transform to Cartesian

apply map projection

rotate image 

subset

subset

PNG



Selected datasets

1. HySICS: LASP hyperspectral instrument to fly on CLARREO

• using calibration data from a balloon flight

• each image is 480 x 640, and cube has 4200 images

2. GOES-R: multispectral, 16 bands 

• 1 - 6 measure outgoing radiance at the top of the atmosphere

• 7 - 16 are digital maps of outgoing radiance values at the top of 

the atmosphere

3. MODIS: multispectral, 36 bands

• Level 1b, 1km spatial resolution, 5 minute temporal resolution

4. POLDER: includes polarization data, 242 x 548

• an extra dimension in the shape of the data



Specific project term goals

• Load 4 datasets into cloud: HySICS, GOES, 

MODIS, POLDER

• Via web page, allow simultaneous users to select 

datasets, subset on geolocation, bandwidth, pixel

• Generate RGB images, for browsing purposes

• Fuse datasets into new products using simple 

interpolation



Demonstrating…

• Handling different multi and hyperspectral 

datasets in the cloud via unified API and 

generalizable framework

• Multiple users sharing very large datasets

• Taking computation to the cloud



Project timeline

project end

Jan 2019Jun 2018

hold workshop

Jun 2019 Aug 2019

integrate datasets harden code summarize

Workshop for invited community members, June 2019

• Steer, harden development

• Get community feedback



Thank you!



Extras



General Science Drivers

1. Retrievals of geophysical variables, for example, cloud and 
aerosol micro-physical properties. This is highest priority, making 
most efficient use of contemporaneous measurements, finding 
overlap in sampling volume and time.

2. Inter-calibration: transfer of calibration from high-accuracy 
sensor to operational sensor (this is related to CLARREO).

3. Model testing. For example, testing climate model output, 
developing and testing Climate Observing System Simulation 
Experiments (OSSEs).”

Dr. Peter Pilewski studies solar spectral variability and effects on climate



Odele’s science application

“I … plan to use the fused GOES-R, MODIS, and 

POLDER datasets to evaluate the added 

information content from the fusion of polarized 

cloud reflectances (i.e. POLDER) with non-

polarized cloud reflectances (GOES, MODIS) for 

cloud thermodynamic phase.”

Dr. Odele Coddington, studies cloud phase transitions



Hylatis tools applied to 

Odele’s problemCurrently using MODIS bands as proxy for PACE

Currently using POLDER data as proxy for PACE polarimeters

Subsetting capabilities needed for these

When PACE is in orbit

Subset PACE to get 2 micron channel, and others

Subset PACE to get polarization data

Fuse the above

RGB image generation of above as part of workflow

(Future: Generate RGB images that outline dataset coverages, so overlap 

can be visualized)



Use of functional 

programming in industry

• Amgen

• AT&T

• Bank of 

America Merrill 

Lynch

• Barclays 

Capital 

Quantitative 

Analysis Group

• Bloomberg

• Credit Suisse

• NVIDIA

• Qualcomm

• Twitter

• Walmart

• Bloomberg

• Facebook 

• Google

• Intel

• Microsoft

• MITRE

• New York 

Times



Functional programming in 

the financial industry, why?

• Lexical analysis and parsing over rich data

• Easy to code AI rules

• immutability reduces error rates

• Scaling across compute units

• lack of state information eases parallelization

• Prototyping of complex algorithms over large 

data volumes


